Search results for "Partial decomposition"

showing 3 items of 3 documents

The Mathematical Modeling of Ca And Fe Distribution In Peat Layers

2015

Bogs have been formed by an accumulation of peat - a light brown-to-black organic material, built up from partial decomposition of mosses and other bryophytes, sedges, grasses, shrubs, or trees under waterlogged conditions. The total peatlands area in Latvia covers 698 918 ha or 10.7% of the entire territory. Knowledge’s of peat metals content are important for any kind of peat using. Experimental determination of metals in peat is very long and expensive work. Using experimental data mathematical model for calculation of concentrations of metals in different points for different layers can help to very easy and fast to find approximately concentration of metals or trace elements. The resul…

Geographygeography.geographical_feature_categoryPeatMathematical modelfinite difference method; heavy metals; peat bogMireHeavy metalsPartial decompositionSoil scienceBogEnvironment. Technology. Resources. Proceedings of the International Scientific and Practical Conference
researchProduct

High-pressure structural behaviour of HoVO4: combined XRD experiments and ab initio calculations.

2014

We report a high-pressure experimental and theoretical investigation of the structural properties of zircon-type HoVO4. Angle-dispersive x-ray diffraction measurements were carried out under quasi-hydrostatic and partial non-hydrostatic conditions up to 28 and 23.7 GPa, respectively. In the first case, an irreversible phase transition is found at 8.2 GPa. In the second case, the onset of the transition is detected at 4.5 GPa, a second (reversible) transition is found at 20.4 GPa, and a partial decomposition of HoVO4 was observed. The structures of the different phases have been assigned and their equations of state (EOS) determined. Experimental results have also been compared to theoretica…

DiffractionCondensed Matter - Materials SciencePhase transitionMaterials scienceConsistency (statistics)Ab initio quantum chemistry methodsHigh pressureMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesThermodynamicsGeneral Materials SciencePartial decompositionCondensed Matter PhysicsJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Low Temperature Afterglow from SrAl <sub>2</sub>O <sub>4</sub>: EU, Dy, B Containing Glass

2020

SrAl2O4: Eu, Dy, B particles were added in a phosphate glass (90NaPO3-10NaF (in mol%)) using the direct doping method. For the first time, the composition of the particles prior to and after embedding them in the glass was analysed using EPMA analysis. Boron was found to be incorporated in already distorted surroundings creating new trapping centers in the particles which are thought to be favourable for the tunnelling process and so for the afterglow at 10K. Despite the partial decomposition of the particles, the glass exhibit afterglow at low temperature confirming to be promising materials for low temperature applications.

Materials sciencechemistryDopingAnalytical chemistrychemistry.chemical_elementPartial decompositionTrappingElectron microprobeBoronQuantum tunnellingPhosphate glassAfterglowSSRN Electronic Journal
researchProduct